28 research outputs found

    Peptide classification using optimal and information theoretic syntactic modeling

    Get PDF
    We consider the problem of classifying peptides using the information residing in their syntactic representations. This problem, which has been studied for more than a decade, has typically been investigated using distance-based metrics that involve the edit operations required in the peptide comparisons. In this paper, we shall demonstrate that the Optimal and Information Theoretic (OIT) model of Oommen and Kashyap [22] applicable for syntactic pattern recognition can be used to tackle peptide classification problem. We advocate that one can model the differences between compared strings as a mutation model consisting of random substitutions, insertions and deletions obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a support vector machine (SVM)-based peptide classifier can be devised. The classifier, which we have built has been tested for eight different substitution matrices and for two different data sets, namely, the HIV-1 Protease cleavage sites and the T-cell epitopes. The results show that the OIT model performs significantly better than the one which uses a Needleman-Wunsch sequence alignment score, it is less sensitive to the substitution matrix than the other methods compared, and that when combined with a SVM, is among the best peptide classification methods availabl

    Fast insect damage detection in wheat kernels using transmittance images

    Get PDF
    We used transmittance images and different learning algorithms to classify insect damaged and un-damaged wheat kernels. Using the histogram of the pixels of the wheat images as the feature, and the linear model as the learning algorithm, we achieved a False Positive Rate (1-specificity) of 0.12 at the True Positive Rate (sensitivity) of 0.8 and an Area Under the ROC Curve (AUC) of 0.90 ± 0.02. Combining the linear model and a Radial Basis Function Network in a committee resulted in a FP Rate of 0.09 at the TP Rate of 0.8 and an AUC of 0.93 ± 0.03

    Preface

    Get PDF
    [No abstract available

    Identification of insect damaged wheat kernels using transmittance images

    Get PDF
    We used transmittance images and different learning algorithms to classify insect damaged and un-damaged wheat kernels. Using the histogram of the pixels of the wheat images as the feature, and the linear model as the learning algorithm, we achieved a False Positive Rate (1-specificity) of 0.2 at the True Positive Rate (sensitivity) of 0.8 and an Area Under the ROC Curve (AUC) of 0.86. Combining the linear model and a Radial Basis Function Network in a committee resulted in a FP Rate of 0.1 at the TP Rate of 0.8 and an AUC of 0.92. © 2004 IEEE

    Peptide classification using optimal and information theoretic syntactic modeling

    No full text
    We consider the problem of classifying peptides using the information residing in their syntactic representations. This problem, which has been studied for more than a decade, has typically been investigated using distance-based metrics that involve the edit operations required in the peptide comparisons. In this paper, we shall demonstrate that the Optimal and Information Theoretic (OIT) model of Oommen and Kashyap [22] applicable for syntactic pattern recognition can be used to tackle peptide classification problem. We advocate that one can model the differences between compared strings as a mutation model consisting of random substitutions, insertions and deletions obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a support vector machine (SVM)-based peptide classifier can be devised. The classifier, which we have built has been tested for eight different substitution matrices and for two different data sets, namely, the HIV-1 Protease cleavage sites and the T-cell epitopes. The results show that the OIT model performs significantly better than the one which uses a Needleman-Wunsch sequence alignment score, it is less sensitive to the substitution matrix than the other methods compared, and that when combined with a SVM, is among the best peptide classification methods available

    On utilizing optimal and information theoretic syntactic modeling for peptide classification

    No full text
    Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of bio-sequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classification using the information residing in their syntactic representations. The latter has traditionally been achieved using the edit distances required in the respective peptide comparisons. We advocate that one can model the differences between compared strings as a mutation model consisting of random Substitutions, Insertions and Deletions (SID) obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a Support Vector Machine (SVM)-based peptide classifier, referred to as OIT-SVM, can be devised. The classifier, which we have built has been tested for eight different "substitution" matrices and for two different data sets, namely, the HIV-1 Protease Cleavage sites and the T-cell Epitopes. The results show that the OIT model performs significantly better than the one which uses a Needleman-Wunsch sequence alignment score, and the peptide classification methods that previously experimented with the same two datasets
    corecore